A multiplier theorem in weighted spaces on locally compact vilenkin groups 空間的一個(gè)乘子定理
For the travelling waves ( al ) and ( a2 ) , we consider the distribution of spectra for the linearized operator in some weighted spaces 對行波( a1 )和( a2 ) ,我們在加權(quán)空間考慮線性化算子的譜分布情況。
In this article , by use of basic concepts of the weighted space distance , a set of locally linearized models is simply and effectively combined into a global description of a nonlinear plant 本研究藉由空間距離權(quán)重的概念,提出簡便且有效的方法,結(jié)合一組局部線性化模式成為一整體的模式,可準(zhǔn)確地代表線性程序。
By introducing weighted space and using the method of priori estimatehe , uniformly compactness are achieved for s ( t ) in weighted space to overcome the noncom - pactness of the classical sobolev embedding in unbounded domain 在加權(quán)空間進(jìn)行先驗(yàn)估計(jì),獲得解算子s ( t )在加權(quán)空間緊的有界吸收集,從而在加權(quán)空間得到整體吸引子的存在性。
In the second chapter , the kdv type equation on unbounded domain is considered . applying with the method of decomposing operator and the theory of constructing some compact operator in weighted space , the existence of exponential attractor is obtained 在第二章中,運(yùn)用帶權(quán)空間構(gòu)造一類緊算子和算子分解的方法,研究了無界區(qū)域上的kdv型方程,得到了該方程指數(shù)吸引子的存在性